4/29/25, 5:25 PM Home Page

Your (Half Yearly Compliance Report) has been Submitted with following details			
Proposal No	IA/OR/IND/59484/2016		
Compliance ID	125825675		
Compliance Number(For Tracking)	EC/M/COMPLIANCE/125825675/2025		
Reporting Year	2025		
Reporting Period	01 Jun(01 Oct - 31 Mar)		
Submission Date	29-04-2025		
RO/SRO Name	ARTATRANA MISHRA		
RO/SRO Email	jhk109@ifs.nic.in		
State	ODISHA		
RO/SRO Office Address	Integrated Regional Offices, Bhubaneswar		
Note:- SMS and E-Mail has been sent to ARTATRANA MISHRA, ODISHA with Notification to Project Proponent.			

DDSP/MOEFCC/001/2025-26/025 April 29, 2025.

Deputy Director General of Forests (C), Ministry of Environment, Forest & Climate Change, Integrated Regional Office (EZ), A/3, Chandrasekharpur, Bhubaneswar – 751 023.

Sub: Submission of six-monthly compliance report of the Environmental clearance for

Dalmia DSP unit of M/s Dalmia Cement Bharat Limited, At/Po. - Rajgangpur, Dist.-

Sundargarh, Odisha for the period October 2024 to March 2025.

Ref: Environmental Clearance vide File No. J-11011/232/2016- 1A II (I) dated 16.02.2018.

Dear Sir,

With reference to above captioned subject matter, we are submitting herewith the six-monthly compliance report of the conditions laid down in above Environmental clearance for Dalmia DSP unit of M/s Dalmia Cement Bharat Limited, At/Po. – Rajgangpur, Dist. – Sundargarh, Odisha for the period October 2024 to March 2025.

Thanking you,

Yours sincerely,

For Dalmia Cement Bharat Limited,

Ashok Kumar Mishra **Head - Environment**

ishra.

Encl: As above.

CC: 1. The Director, Impact Assessment Division, MoEF&CC, New Delhi.

2. The Member Secretary, CPCB, New Delhi.

3. The Member Secretary, OSPCB, Bhubaneswar, Odisha.

Half Yearly Compliance Report 2025 01 Jun(01 Oct - 31 Mar)

Acknowledgement

Proposal Name	Proposed Cement Plant (Dalmia DSP Unit) - Clinker 3.0 MTPA, Cement 2.25 MTPA, WHRS (15 MW) and DG Set (1000 KVA) by Dalmia Cement Bharat Limited at Village & Tehsil - Rajgangpur, District - Sundargarh, Odisha.
Name of Entity / Corporate Office	Dalmia Cement (Bharat) Limited
Village(s)	N/A
District	SUNDARGARH

District SUNDARGARE

Proposal No.	IA/OR/IND/59484/2016
Plot / Survey / Khasra No.	N/A
State	ODISHA
MoEF File No.	J-11011/232/2016-IA.II (I)

Category	Industrial Projects - 2
Sub-District	N/A
Entity's PAN	****9414C
Entity name as per PAN	DALMIA CEMENT (BHARAT) LIMITED

Compliance Reporting Details

Reporting Year 2025

Remarks (if any)

Reporting Period 01 Jun(01 Oct - 31 Mar)

Details of Production and Project Area

Name of Entity / Corporate Office Dalmia Cement (Bharat) Limited

	Project Area as per EC Granted	Actual Project Area in Possession
Private	0	0.020
Revenue Land	39.27	46.207
Forest	0	0
Others	0	0
Total	39.27	46.227000000000004

Production Capacity

Sr. no	Product Name	units	Valid Upto	Capacity	Production last year	Capacity as per CTO
1	Clinker	Tons per Annum (TPA)	31/03/2028	3000000	2508368	3900000
2	WHRB	MW	31/03/2028	15	90971	15

Conditions

Specific Conditions

Sr.No.	Condition Type	Condition Details	
1	Corporate Environmental Responsibility	1. An amount of Rs 46.00 Crores proposed towards I Social Commitment (ESC) shall be utilized as capital e project mode. The project shall be completed in concur implementation of the expansion and estimated on the Scheduled Rates.	expenditure in crence with the
The amo	abmission: Being Complied unt earmarked towards ESC have beennent, livelihood and skill developmen	en spent on education, health, sanitation, infrastructure t initiatives etc.	Date: 29/04/2025
2	GREENBELT	Green belt shall be developed in 12.95 Ha equal to 3: area with a native tree species in accordance with CPC. The greenbelt shall inter alia cover the entire periphery. The plantation shall be completed within one year form issue of EC. In addition to this 1500 additional plants swithin the premises.	B guidelines. of the plant. the date of
Green co	abmission: Being Complied over has been developed in and around in this year till March 2025.	d the plant premises. We have planted around 3249	Date: 29/04/2025
3	WASTE MANAGEMENT	4. Kitchen waste shall be composted or convened to further use.	biogas for
		composting of food and kitchen wastes for further use	Date: 29/04/2025
4	ENERGY PRESERVATION MEASURES	5. The project proponent shall adopt the slip power refor energy conservation.	ecovery system
	abmission: Complied ver recovery system is in place for ene	rgy conservation.	Date: 29/04/2025
5	MISCELLANEOUS	Detailed study of the fauna in the study area shall be within one year. If Schedule-I species are found, then oplan for Schedule-I species be prepared and implement consultation with state forest department. The PP shall necessary financial resources for implementation of the	conservation ted in provide
	abmission: Complied dule I species have been found within	the project area.	Date: 29/04/2025
6	WATER QUALITY MONITORING AND PRESERVATION	No ground water shall be used for plant & township	
	abmission: Complied water is not used in the plant or towns	hip.	Date: 29/04/2025
7	MISCELLANEOUS	3. The Capital cost Rs. 95.00 Crores and annual recu 5.00 Crores towards the environmental protection mea	

	earmarked separately. The funds so provided shall not any other purpose.	be diverted for
PPs Submission: Complied The funds have been utilized for environmenta purpose.	al protection and has not been diverted for any other	Date: 29/04/2025

General C	onditions		
Sr.No.	Condition Type	Condition Details	
1	WATER QUALITY MONITORING AND PRESERVATION	b) Provide water meters at the inlet to all unit proces cement plants:	ses in the
	ubmission: Complied eters are in place at the inlet to all uni	it processes in the plant.	Date: 29/04/2025
2	WATER QUALITY MONITORING AND PRESERVATION	c) Make efforts to minimize water consumption in the complex by segregation of used water, practicing case recycling treated water.	
Water co	ubmission: Complied onservation efforts are practised to miscycled water.	nimize the freshwater consumption by maximizing the	Date: 29/04/2025
3	ENERGY PRESERVATION MEASURES	6 (a) provide Waste heat recovery system for kiln an	d cooler;
	ubmission: Complied W Green Power plant has been installe	ed having waste heat recovery system for kiln and	Date: 29/04/2025
4	AIR QUALITY MONITORING AND PRESERVATION	a. Install 24x7 continuous emission monitoring systestacks to monitor stack emission with respect to param prescribed in G.S.R. No. 612 (E) dated 25th August, 2 subsequent amendment dated 10th May, 2016 from time SO. 3305 (E) dated 7th December 2015 for thermal parameter amended from time to time and connected to CPCB or	neters 014 and ne to time; nower plants as
Continue	abmission: Complied ous Emission Monitoring System (CE) d are connected to the Board server.	EMS) have been installed in all process stacks of our	Date: 29/04/2025
5	AIR QUALITY MONITORING AND PRESERVATION	b. Monitor fugitive emissions in the plant premises;	
	ubmission: Complied emissions are being regularly monito	ored within plant premises.	Date: 29/04/2025
6	AIR QUALITY MONITORING AND PRESERVATION	c. Carryout Continuous Ambient Air Quality monito National Ambient Air Quality Standards issued by the G.S.R.No. 826(E) dated I6th November 2009 (as amer to time) within and outside the plant area at least at for covering upwind and downwind directions at an angle each; and	Ministry vide nded from time ar locations

	Submission: Complied QMS Stations have been installed v	vithin and outside the plant premises.	Date: 29/04/2025
7	AIR QUALITY MONITORING AND PRESERVATION	d. Submit monitoring report to Regional Office of N Zonal office of CPCB and Regional Office of SPCB a monthly monitoring report.	
Six mo	Submission: Complied onthly compliance report along wit ically. The Monitoring Report atta	th monitored results are submitted to the statutory bodies ched	Date: 29/04/2025
8	WATER QUALITY MONITORING AND PRESERVATION	b) submit monitoring report to Regional Office of N Zonal office of CPCB and Regional Office of SPCB a monthly monitoring report.	
		th monitored data are submitted to statutory bodies	Date: 29/04/2025
9	AIR QUALITY MONITORING AND PRESERVATION	a) Provide appropriate Air Pollution Control (APC) the dust generating points including fugitive dust fror sources;	•
Auxill	Submission: Complied ary Bag filters, Bag houses and du ting points including transfer towe	st suppression systems have been installed at major dust ers.	Date: 29/04/202
10	AIR QUALITY MONITORING AND PRESERVATION	b) Design suitable capacity of bag filters to handle gamma 150% of the normal flow from process/ from suction achieve particulate emission to less than 30 mg/N m3	hoods to
	Submission: Complied nately sized bag filters have been in	nstalled to control the PM emissions below 30 mg/Nm3.	Date: 29/04/202
11	AIR QUALITY MONITORING AND PRESERVATION	c) Provide leakage detection and mechanized bag cl for better maintenance of bags:	eaning faciliti
	Submission: Complied Bag Houses are provided with lear	kage detection and mechanized bag cleaning facilities.	Date: 29/04/202
12	AIR QUALITY MONITORING AND PRESERVATION	d) Provide pollution control system in the cement por CREP Guidelines of CPCB;	lant as per the
	Submission: Complied ion control measures as recommen	ded in CREP guidelines for Cement Plant is being adhered	Date: 29/04/202
13	AIR QUALITY MONITORING AND PRESERVATION	e) Provide sufficient number of mobile or stationery cleaners to clean plant roads, shop floors, roofs regula	
PPs	Submission: Complied	·	Date: 29/04/2025

	PRESERVATION	devices in the process after agglomeration;	·
Lime a	Submission: Complied and coal fines collected in the pollutionum extent possible.	on control devices are recycled and reused to the	Date: 29/04/2025
15	AIR QUALITY MONITORING AND PRESERVATION	g) Use leak proof trucks/dumpers for carrying coal at materials and shall cover them with tarpaulin. Use clos carrying fly ash;	
Trucks	Submission: Complied s used for carrying coal and other raw y rakes are used for fly ash transportations.	materials are covered with tarpaulin. Closed bulkers and tion.	Date: 29/04/2025
16	AIR QUALITY MONITORING AND PRESERVATION	h) Provide wind shelter fence and chemical spraying material stock piles:	on the raw
	Submission: Complied barriers have been provided near raw	material stock piles.	Date: 29/04/2025
17	AIR QUALITY MONITORING AND PRESERVATION	i) Provide Low NOx burners to control NOx emission calibration of the instruments must be ensured. If need be controlled by using SCR/NSCR technologies:	
	Submission: Complied NOx burners have been installed to cor	ntrol NOx emissions.	Date: 29/04/2025
18	AIR QUALITY MONITORING AND PRESERVATION	j) Have separate truck parking area and monitor vehicat regular interval.	cular emissio
	Submission: Complied icated truck parking area has been pro	vided and vehicular emissions are monitored.	Date: 29/04/2025
19	WATER QUALITY MONITORING AND PRESERVATION	a) Adhere to "zero liquid discharge";	
19			Date:
PPs Cemei	Submission: Being Complied nt manufacturing is a dry process, and pon/surface run off.	zero liquid discharge is being adhered to except	29/04/2025
PPs Cemen monso	nt manufacturing is a dry process, and	zero liquid discharge is being adhered to except b) Provide Sewage Treatment Plant for domestic was	29/04/2025
PPs Cemer monso 20 PPs	nt manufacturing is a dry process, and pon/surface run off. WATER QUALITY MONITORING AND	b) Provide Sewage Treatment Plant for domestic was	29/04/2025

	Submission: Complied d drains with collection pits are provided.	led at stockpile area.	Date: 29/04/2025
22	WATER QUALITY MONITORING AND PRESERVATION	a) Practice rainwater harvesting to maximum possib	ole extent;
	Submission: Being Complied op rainwater harvesting systems are ins	stalled.	Date: 29/04/2025
23	ENERGY PRESERVATION MEASURES	6 (b) make efforts to achieve power consumption le units/tonne for Portland Pozzolona Cement (PPC) and for Ordinary Portland Cement (OPC) production and consumption of 670 Kcal/Kg of clinker;	1 85 units/tonne
	•	d thermal energy consumption within the stipulated	Date: 29/04/2025
24	ENERGY PRESERVATION MEASURES	6 (c) provide solar power generation on roof tops of solar light system for all common areas, street lights. project area and maintain the same regularly;	
	Submission: Complied MW Solar power system has been insta	alled.	Date: 29/04/2025
25	ENERGY PRESERVATION MEASURES	6 (d) provide the project proponent for LED lights i and residential areas:	n their offices
	Submission: Complied ghts are used in offices as well as resid	lential areas.	Date: 29/04/2025
26	ENERGY PRESERVATION MEASURES	6 (e) maximize utilization of fly ash, slag and sweet blend as per BIS standards;	ener in cement
	Submission: Complied num utilization of fly ash as well as sla	g is done in the cement blend.	Date: 29/04/2025
27	ENERGY PRESERVATION MEASURES	6 (f) maximize utilization of alternate fuels and Coachieve best practice norms.	processing to
	Submission: Complied accessing of Hazardous wastes as alternated	ate fuels and raw mix is carried out.	Date: 29/04/2025
28	Human Health Environment	7. Efforts shall be made to reduce impact of the transmaterials and end products on the surrounding enviro agricultural land by the use of covered conveyor belts mode of transport.	nment including
Raw m	Submission: Complied naterial from our captive mines to the conveyor (CCBC).	rement plant is transported through cross-country closed	Date: 29/04/2025

	Submission: Complied refractories are recycled to the maximum	m extent possible.	Date: 29/04/2025
30	GREENBELT	9. The PP shall prepare GHG emissions inventory shall submit the program for reduction of the same ir sequestration including plantation.	
GHG (Submission: Being Complied emissions inventory for the plant is in pet the fuel consumption. Plantation is can	place and maximum use of RDF as fuel is done to rried out on a regular basis.	Date: 29/04/2025
31	Risk Mitigation and Disaster Management	10. Emergency preparedness plan based on the Hazidentification and Risk Assessment (HIRA) and Disa Management Plan shall be implemented.	
Emerg	Submission: Complied gency Preparedness Plan based on HIRA conducted at regular intervals to check	A and DMP is implemented at site along with mock the efficiency of the same.	Date: 29/04/2025
32	Human Health Environment	11. The PP shall Carry-out heat stress analysis for who work in high temperature work zone and provid Protection Equipment (PPE) as per the norms of Factorial Carry-out heat stress analysis for the work in high temperature work zone and provid Protection Equipment (PPE) as per the norms of Factorial Carry-out heat stress analysis for the work zone.	e Personal
PPEs l	Submission: Complied have been made mandatory job specific ng in high temperature zone.	e and heat stress analysis carried out for workmen	Date: 29/04/2025
33	Statutory compliance	12. The PP shall adhere to the corporate environme system of the reporting of any infringements/ non-co conditions at least once in a year to the Board of Directory of the board resolution shall be submitted to the part of six-monthly report.	mpliance of E0 ectors and the
	Submission: Complied		
	-	pliances are reviewed at Board of Directors level	Date: 29/04/2025
period	onment Policy is in place and non-comp	13. All the recommendations made in the Charter of Responsibility for Environment Protection (CREP) f plants shall be implemented.	29/04/2025 on Corporate
34 PPs	Corporate Environmental Responsibility Submission: Complied	13. All the recommendations made in the Charter of Responsibility for Environment Protection (CREP) f	29/04/2025 on Corporate or the cement Date:
34 PPs All rec	Corporate Environmental Responsibility Submission: Complied	13. All the recommendations made in the Charter of Responsibility for Environment Protection (CREP) f plants shall be implemented.	29/04/2025 on Corporate or the cement Date: 29/04/2025 personnel shall
PPs All rec 35 PPs An En	Corporate Environmental Responsibility Submission: Complied commendations made in the CREP guid Statutory compliance Submission: Complied	13. All the recommendations made in the Charter of Responsibility for Environment Protection (CREP) finants shall be implemented. delines for Cement Plant are being adhered to. 14. A dedicated environmental cell with qualified pestablished. The head of the environment cell shall responsible to the control of the contr	29/04/2025 on Corporate or the cement Date: 29/04/2025 personnel shall

PPs Submission: Comple Necessary basic infrastruct		to workers and labour during the construction phase.	Date: 29/04/2025
37 Statutory com	pliance	16. The project authorities must strictly adhere to the made by the State Pollution Control Board and the St	-
PPs Submission: Compl Noted and will be adhered		ne.	Date: 29/04/2025
38 Statutory com	pliance	17. No further expansion or modifications in the placarried out without prior approval of the Ministry of Forests and Climate Change (MoEF&CC).	
PPs Submission: Compl Noted and no expansion/m Ministry.		carried out without obtaining prior approval from the	Date: 29/04/2025
39 WASTE MAN	JAGEMENT	18. The waste oil, grease and other hazardous shall as per the Hazardous & Other waste (Management & Movement) Rules, 2016.	-
PPs Submission: Complewaste Oil, Grease and other 2016 and amendments then	er Hazardous waste	es are handled and disposed off as per HOWM Rules	Date: 29/04/2025
40 Risk Mitigation Management	n and Disaster	19. The storage of NH3 and other hazardous chemi shall be as per the provisions of Manufacture, Storag Hazardous Chemical Rules, 1989 as amended from the	e and Import of
PPs Submission: Compl. Noted. NH3 and other Haz areas as per storage rules.		are being stored properly in designated and earmarked	Date: 29/04/2025
41 Noise Monitor	ring & Prevention	20. The ambient noise levels should conform to the prescribed under EPA Rules. 1989 viz. 75 dB(A) dur 70 dB(A) during night time.	
PPs Submission: Complete The ambient noise levels n		within the stipulated norms.	Date: 29/04/2025
42 Human Health	Environment	21. Occupational health surveillance of the workers on a regular basis and records maintained as per the I	
PPs Submission: Complete The health surveillance of maintained as per Factories	the workers as wel	l as executives is done periodically, and records are	Date: 29/04/2025
43 MISCELLAN	EOUS	22. The project proponent shall also comply with all environmental protection measures and safeguards rethe EIA/EMP report.	
PPs Submission: Complemented.		eguards recommended in EIA/EMP report are	Date: 29/04/2025
44 Human Health	Environment	23. Ventilation system shall be designed for adequa	te air changes as

		plants.	
		lequate air changes in all tunnels, motor houses, cement	Date: 29/04/2025
45	WASTE MANAGEMENT	24. Sufficient number of colour coded waste collectic constructed at shop floors in each hop to systematically store waste materials generated at the shop floors (other waste) in designated colored bins for value addition by reuse of such wastes and for good housekeeping.	y segregate ar er than Proces
Wastes	ubmission: Complied other than process wastes collected to good housekeeping practice.	from shop floors are segregated and stored in color coded	Date: 29/04/2025
46	Statutory compliance	25 (a) send a copy of environmental clearance letter Local Bodies, Panchayat, Municipal bodies and relevathe Government:	
		e submitted to heads of local bodies and relevant Govt.	Date: 29/04/2025
47	Statutory compliance	25 (b) put on the clearance letter on the web site of thaccess to the Public.	ne company f
	ubmission: Complied mental Clearance Letter has been up	bloaded and made available on company website.	Date: 29/04/2025
48	Statutory compliance	25 (c) inform the public through advertisement within from the date of issue of the clearance letter, at least in newspapers that are widely circulated in the region of the bein the vernacular language that the project has been environmental clearance by the Ministry and copies of letter are available with the SPCB and may also be see the Ministry of Environment. Forests and Climate Cha (MoEF&CC) at http://envfor.nic.in.	two local which one sh accorded the clearance n at Website
The gra	ubmission: Complied nt of Environmental Clearance to the Today and Manthan dated 22.02.201	e project was advertised in two local newspaper i.e.	Date: 29/04/2025
49	Statutory compliance	25 (d) upload the status of compliance of the stipulate clearance conditions, including results of monitored day website and update the same periodically	
		g with the environment monitoring data are uploaded	Date: 29/04/2025
50	Statutory compliance	25 (e) monitor the criteria pollutants Level namely P. NOx (ambient levels as well as stack emissions) or crit parameters indicated for the projects and display the sa convenient location for disclosure to the public and pur website of the company;	tical sectoral ame at a

as uploa	nded on company website.		29/04/2025
51	Statutory compliance	25 (f) submit six monthly reports on the status of the the stipulated environmental conditions including result monitored data (both in hard copies as well as by e-ma Regional Office of MoEF&CC, the respective Zonal C and the SPCB:	its of il) to the
Six mor	ubmission: Complied nthly compliance reports including bodies.	g environment monitoring data are submitted to the	Date: 29/04/2025
52	Statutory compliance	25 (g) submit the environmental statement for each from-V to the concerned State Pollution Control Board under the Environment (Protection) Rules. 1986, as an subsequently and put on the website of the company;	d as prescribe
Environ	ubmission: Complied mental Statement in Form V has be d periodically on company websit	been submitted to OSPCB on 24.09.2024. The same is e.	Date: 29/04/2025
53	Statutory compliance	25 (h) inform the Regional Office as well as the Min of financial closure and final approval of the project by authorities and the date of commencing the land development.	the concerne
Project operate		we obtained consent to establish (CTE) and consent to coll Board, Odisha for the commencement of operation since	Date: 29/04/2025
54	MISCELLANEOUS	26. The Ministry may revoke or suspend the clearance implementation of any of the above conditions is not so	
PPs S Noted.	ubmission: Complied		Date: 29/04/2025
55	MISCELLANEOUS	27. The Ministry reserves the right to stipulate additi- if found necessary. The Company in a time bound man implement these conditions.	
	ubmission: Complied nd will be complied if any from ti	me to time.	Date: 29/04/2025
56	PUBLIC HEARING	28. The project proponent shall abide by all the commercommendations made in the EIA/EMP report and the presentation to the EAC. The commitment made by the proponent to the issue raised during Public Hearing shall implemented by the proponent.	nt during their e project
	ubmission: Being Complied amitments and recommendations n	nade in the EIA/EMP report are being implemented.	Date: 29/04/2025
57	MISCELLANEOUS	29. The above conditions shall be enforced. inter-alia provisions of the Water (Prevention & Control of Pollu 1974, the Air (Prevention & Control of Pollution) Act, Environment (Protection) Act. 1986, Hazardous and O (Management and Transboundary Movement) Rules, 2	ntion) Act. 1981. the ther Wastes

		Public Liability Insurance Act, 1991 along with their amendments and rules.				
PPs Noted	Submission: Complied		Date: 29/04/2025			
58	MISCELLANEOUS	30. Any appeal against this EC shall lie with the Nat Tribunal, if preferred, within a period of 30 days as pr Section 16 of the National Green Tribunal Act. 2010.				
PPs Noted	Submission: Complied		Date: 29/04/2025			
59	WATER QUALITY MONITORING AND PRESERVATION	2 (a) Install 24x7 continuous effluents monitoring sy discharge points to monitor treated effluents with resp parameters prescribed in G.S.R. No. 612 (E) dated 25t and subsequent amendment dated 9th May, 2016 and as amended from time to time; S.O.3305 (E) dated 7th 2015 for thermal power plants as amended from time amended from time to time;	ect to h August. 201 10th May 2016 December			
Cemer	Submission: Complied nt manufacturing being a dry proceeded back in the cooling circuit an	ess, no such effluent is generated and wastewater generated d dust suppression.	Date: 29/04/2025			

Visit Remarks

Last Site Visit Report Date:	N/A
Additional Remarks:	The detailed environment monitoring report for the period of October 2024 to March 2025 is attached as additional attachment.

Note: This acknowledgement is as per the details submitted by project proponent. In no way is this document to be considered as conclusion on any action on the compliance of the project. This is strictly for the project proponent's reference purpose.

ENVIRONMENTAL MONITORING REPORT

BASED ON DATA GENERATED

FROM

OCTOBER 2024 – MARCH 2025

FOR

DALMIA CEMENT BHARAT LIMITED

At/Po: RAJGANGPUR - 770017, District: SUNDARGARH, ODISHA

Prepared By:

Cleenviron Private Limited

PLOT NO: 689/17, INDUSTRIAL ESTATE, KALUNGA – 770031, ROURKELA, ODISHA
Tele: 0661 – 2475746

Email:cleenviron@gmail.com

1. DATA ANALYSIS

1.1 Micro-meteorological Study:

1.1.1 Wind Speed & Wind Direction

During the entire period from 1st October to 31st March all total 4371 no. of data are recorded by the instrument and after interpretation of the collected data it was found that Calm condition prevailed over 6.59%, while considering the 24 hourly data. 4.7% calm condition prevailed from morning 6 hrs to 14hrs for the entire study period, 2.5% calm condition prevailed from 14hrs to 22hrs and 13.0% calm condition prevailed from 22hrs to 06hrs. The predominant wind directions were from S, NE & SW with average wind speed 2.59 m/sec. The wind rose diagram for the entire study period are depicted on the **Figure No: 1.1, 1.2, 1.3 & 1.4.**

1.1.2 Temperature

The maximum & minimum temperature during the entire study period were divided in to three parts as the study period was covering post monsoon, winter as well as early summer seasons. The Minimum temperature during the post monsoon season was found to be 12.76°C and the Maximum temperature was found to be 35.36°C up to the end of 30th November.

The minimum and maximum temperature during the winter season i.e. from December to February was found to be 8.30°C and 36.56°C. During the month of March the minimum and maximum temperature were 12.62°C and 40.89°C. **Table No 1.1** shows a summary of micro-meteorological data collected for the entire period.

1.1.3 Rainfall

The total rain fall from 1st October to 31st March was observed to be 76.6 mm during the study period. A month wise rainfall data recorded at the site is depicted in **Table No 1.1.**

Table No: 1.1

A SUMMARY OF THE MICRO-METEOROLOGICAL DATA

Project Site Location

DALMIA DSP UNIT

SI No	Parameters	From October 2024 – March 2025
1	Predominant Wind Direction	From NE, S & SW
2	Calm Condition %	6.59%
3	Average Wind Speed m/sec	2.59
4	Temperature °C	
	Post Monsoon Season	
	Minimum	12.76
	Maximum	35.36
	Winter Season	
	Minimum	8.30
	Maximum	36.56
	Early Summer	-
	Minimum	12.62
	Maximum	40.89
5	Rain Fall in mm	
	October	11.4
	November	8.6
	December	7.6

SI No	Parameters	From October 2024 – March 2025
	January	0.0
	February	8.6
	March	40.4
417	Total	76.6

Figure No: 1.2 Wind Rose Diagram for 24 Hours

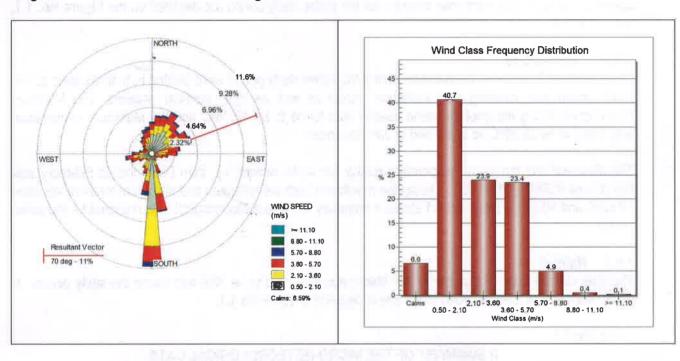


Figure No: 1.2 Wind Rose Diagram from 06 – 14 Hours

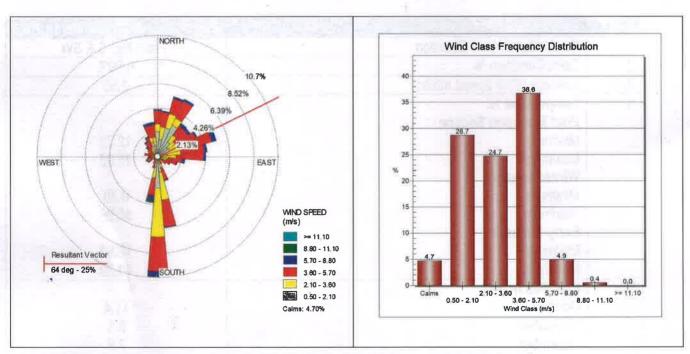


Figure No: 1.3 Wind Rose Diagram from 14 – 22 Hours

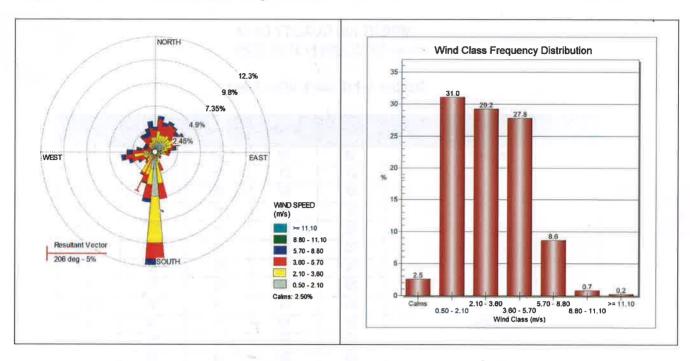


Figure No: 1.4 Wind Rose Diagram from 22 – 06 Hours

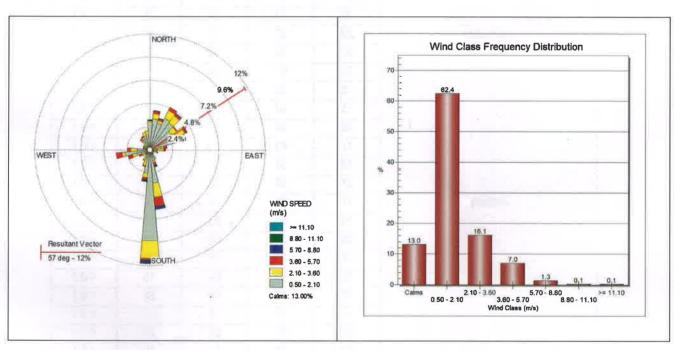


Table No: 1

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-1 (Konark Vihar Area)

	PM2.5	PM10	SO ₂	NO ₂	СО
Months	μg/m³	μg/m³	µg/m³	μg/m³	mg/m³
October	19	55	05	20	< 0.1
	21	61	09	28	< 0.1
	22	62	08	29	< 0.1
Track of the Control	27	78	10	29	< 0.1
	22	64	05	18	< 0.1
	25	72	06	26	< 0.1
THE RESERVE OF THE PARTY OF THE	24	70	06	22	< 0.1
	20	58	09	21	< 0.1
	25	74	04	18	< 0.1
November	25	72	04	14	< 0.1
4.4	23	66	-05	22	< 0.1
	20	59	03	12	< 0.1
	14	49	05	20	< 0.1
	27	76	06	20	< 0.1
	24	69	06	10	< 0.1
	22	67	08	18	< 0.1
	21	63	09	19	< 0.1
	25	72	04	14	< 0.1
December	23	65	03	11	< 0.1
	23	66	04	12	< 0.1
	21	61	04	14	< 0.1
	18	53	06	21	< 0.1
	15	43	05	15	< 0.1
	15	44	04	13	< 0.1
	17	48	< 3	12	< 0.1
	12	38	03	19	< 0.1
	21	59	03	20	< 0.1
January	17	51	04	20	< 0.1
F - F	19	55	05	22	< 0.1
	20	59	04	16	< 0.1
	17	51	07	29	< 0.1
	16	46	04	15	< 0.1
	18	53	06	23	< 0.1
	21	62	03	21	< 0.1
	22	65	05	24	< 0.1
	23	68	08	19	< 0.1
February	23	68	06	20	< 0.1
	25	73	04	23	< 0.1
	17	48	05	19	< 0.1
	29	78	08	30	< 0.1
	16	41	09	26	< 0.1
	16	42	09	25	< 0.1

Months	PM2.5 µg/m³	PM10 µg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m ³
	20	58	05	18	< 0.1
	18	52	03	20	< 0.1
	23.	68	06	20	< 0.1
March	18	51	05	18	< 0.1
	16	46	06	22	< 0.1
	27	76	09	31	< 0.1
	25	64	08	25	< 0.1
	19	53	04	13	< 0.1
	17	49	05	16	< 0.1
	23	69	06	20	< 0.1
•	22	68	05	19	< 0.1
	24	72	07	24	< 0.1

Table No: 2

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-2 (General Store Area, Line – 1)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
October	28	80	06	22	< 0.1
	28	81	07	24	< 0.1
	18	51	08	31	< 0.1
	24	68	05	16	< 0.1
	24	70	03	19	< 0.1
	24	69	07	22	< 0.1
	26	73	06	25	< 0.1
	23	61	04	18	< 0.1
	24	71	04	14	< 0.1
November	26	77	05	19	< 0.1
	27	79	06	23	< 0.1
	25	72	03	11	< 0.1
	28	. 78	06	28	< 0.1
1 12	23	68	05	20	< 0.1
	28	70	04	21	< 0.1
	24	69	07	26	< 0.1
	22	65	03	16	< 0.1
	26	77	05	19	< 0.1
December	22	68	05	14	< 0.1
	17	49	05	17	< 0.1
	27	79	03	14	< 0.1
	26	77	03	13	< 0.1
	25	74	05	15	< 0.1
	23	67	04	14	< 0.1
	24	69	05	20	< 0.1
	22	60	< 3	17	< 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	μg/m³	μg/m³	µg/m³	μg/m³	mg/m³
	24	69	06	18	< 0.1
January	23	67	08	26	< 0.1
	24	71	09	30	< 0.1
	22	63	07	22	< 0.1
	23	66	08	29	< 0.1
	21	61	03	14	< 0.1
	20	65	05	28	< 0.1
	25	73	04	23	< 0.1
	24	69	06	25	< 0.1
	26	70	04	20	< 0.1
February	20	55	07	25	< 0.1
	21	59	07	25	< 0.1
	20	58	04	22	< 0.1
	28	70	07	21	< 0.1
	26	69	< 03	15	< 0.1
	26	75	04	20	< 0.1
	28	80	07	23	< 0.1
	27	78	05	22	< 0.1
	20	55	07	25	< 0.1
March	27	78	07	24	< 0.1
	26	74	04	20	< 0.1
	23	66	06	29	< 0.1
	29	79	09	28	< 0.1
	28	80	08	26	< 0.1
	26	77	06	25	< 0.1
	26	72	06	21	< 0.1
	25	71	06	20	< 0.1
	25	71	06	21	< 0.1

Table No: 3

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-3 (Material Gate, DSP Unit)

Months	PM2.5 µg/m³	PM10 μg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m ³
October	22	63	03	12	< 0.1
	30	86	07	31	< 0.1
	29	82	05	29	< 0.1
	27	78	03	17	< 0.1
	23	66	07	22	< 0.1
	25	70	10	24	< 0.1
	22	63	06	19	< 0.1
	23	65	06	- 20	< 0.1
	21	60	03	14	< 0.1
November	23	66	05	19	< 0.1

		PM2.5	PM10	SO ₂	NO ₂	CO
N	lonths	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
		28	80	07	24	< 0.1
		26	77	04	16	< 0.1
		26	73	07	31	< 0.1
		27	79	04	23	< 0.1
		25	72	06	15	< 0.1
		27	80	03	18	< 0.1
		24	70	06	22	< 0.1
		23	66	05	19	< 0.1
De	cember	28	79	06	19	< 0.1
		22	71	05	18	< 0.1
		28	81	06	18	< 0.1
		23	69	03	14	< 0.1
		27	78	06	20	< 0.1
		27	80	05	23	< 0.1
		25	75	04	22	< 0.1
		24	69	07	- 21	< 0.1
		24	73	06	22	< 0.1
Ja	anuary	24	71	04	19	< 0.1
		28	80	07	24	< 0.1
		25	72	07	24	< 0.1
		24	71	05	17	< 0.1
		26	74	07	26	< 0.1
		29	81	06	22	< 0.1
		27	78	03	20	< 0.1
		25	75	06	28	< 0.1
		23	67	04	21	< 0.1
Fe	bruary	28	79	08	25	< 0.1
		28	80	05	20	< 0.1
		25	78	06	30	< 0.1
		27	78	07	25	< 0.1
		31	78	09	23	< 0.1
		27	79	05	21	< 0.1
		29	82	07	22	< 0.1
		26	76	08	26	< 0.1
		28	79	08	25	< 0.1
	March .	28	80	03	10	< 0.1
\\	March	27	77	03		
					13	< 0.1
		28	72	09	30	< 0.1
		29	80	06	28	< 0.1
		28	81	08	21	< 0.1
		27	79	07	23	< 0.1
		25	71	06	22	< 0.1
		26	74	06	20	< 0.1
		23	69	08	26	< 0.1

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-4 (Near Refractory Main Gate)

Months	PM2.5	PM10	SO ₂	NO ₂	CO malm3
Months October	μg/m ³	μg/m ³ 66	μg/m ³ 04	μg/m³ 16	mg/m ³
Octobel	29	83	04	17	
	27	77	05	23	
0.	28	80	06	20	.l.
	24	71	04	17	
	28	81	05	20	
	27	79	07	24	L
- 2	22	65	07	19	
	25	73	06	21	
November	23	68	07	21	
1 TO TO THIS OF	22	65	06	20	
	24	70	05	16	
	27	74	08	35	
	26	69	09	30	
	25	72	08	15	
	23	66	04	25	1:
	28	79	03	27	
	23	68	07	21	
December	28	81	05	18	
200050.	27	78	04	15	
	25	73	03	17	
	25	72	07	26	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	23	66	06	20	
	26	76	07	26	< 0.1
	24	70	03	24	
	24	68	05	21	< 0.1
	28	79	05	21	< 0.1
January	24	71	04	19	< 0.1
	28	80	07	24	< 0.1
	25	72	07	24	< 0.1
	24	71	05	17	< 0.1
	26	74	07	26	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
	29	81	06	22	< 0.1
	27	78	03	20	
Marie Total	25	75	06	28	< 0.1
	23	67	04	21	< 0.1
February	28	80	06	25	< 0.1
	26	75	05	27	< 0.1
	20 -	57	- 09	26	< 0.1
	30	78	05	21	
	32	82	08	28	
	24	71	06	23	

Months	PM2.5 μg/m³	PM10 µg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m³
	27	78	04	17	< 0.1
	27	77	07	22	< 0.1
	 28	80	06	25	< 0.1
March	26	75	07	21	< 0.1
	27	79	05	18	< 0.1
	24	71	04	23	< 0.1
	27	79	07	23	< 0.1
	29	80	08	23	< 0.1
	27	77	06	20	< 0.1
	25	76	06	21	< 0.1
	18	55	07	22	< 0.1
	25	75	07	23	< 0.1

Table No: 5

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-5 (B. G Loco Gate, Line – 1)

Months	PM2.5 µg/m³	PM10 µg/m ³	SO ₂ µg/m³	NO₂ µg/m³	CO mg/m³
October	24	70	05	22	< 0.1
	21	61	04	19	< 0.1
	29	78	07	31	< 0.1
	22	64	05	16	< 0.1
	24	69	03	14	< 0.1
	27	72	08	25	< 0.1
	23	71	07	23	< 0.1
	24	67	06	20	< 0.1
	22	64	03	16	< 0.1
November	25	73	07	25	< 0.1
	23	68	05	17	< 0.1
	26	76	07	22	< 0.1
	26	70	07	29	< 0.1
	27	69	06	23	< 0.1
	28	78	06	20	< 0.1
	24	67	04	27	< 0.1
	27	74	05	24	< 0.1
	25	73	07	25	< 0.1
December	21	59	03	14	< 0.1
	25	70	07	26	< 0.1
	23	67	04	21	< 0.1
	26	76	07	22	< 0.1
	24	69	07	26	< 0.1
	25	73	05	21	< 0.1
	22	68	06	25	< 0.1
	21	60	08	27	< 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
	22	62	06	20	< 0.1
January	22	65	5 07	24	
	24	69	04	14	
	25	74	06	28	< 0.1
	21	62	07	29	< 0.1
	24	70	05	22	< 0.1
	23	67	03	27	< 0.1
	20	62	06	26	< 0.1
	26	72	05	23	< 0.1
19- 1 10 10 10 10 10 10 10 10 10 10 10 10 1	27	71	06	25	< 0.1
February	27	79	07	29	< 0.1
	29	78	06	25	< 0.1
	25	70	09	30	. < 0.1
22	22	69	04	21	< 0.1
	26	77	06	26	< 0.1
	24	69	07	24	< 0.1
ATEL	26	76	05	18	< 0.1
, = v	25	73	07	19	< 0.1 < 0.1
***	27	79	07	29	< 0.1
March	25	73	05	25 30 21 26 24 18 19	< 0.1
	24	70	03	23	< 0.1
	26	74	04	15	< 0.1
	22	59	04	21	< 0.1
	26	75	06	17	< 0.1
	25	72	07	20	< 0.1
	26	74	07	26	< 0.1
	24	70	07	25	< 0.1
	26	74	06	19	< 0.1
	25	73	05	20	< 0.1

Table No: 6

AMBIENT AIR QUALITY DATA From 01.10.2024 to 31.03.2025

Station: A-6 (Workshop Area, Line – 2)

Months	PM2.5 μg/m ³	PM10 µg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m ³
October	24	71	03	20	< 0.1
	30	86	04	23	< 0.1
	24	69	06	20	< 0.1
	24	69	04	16	< 0.1
	28	79	07	29	< 0.1
	22	70	07	21	< 0.1
4. 1. 5.	25	75	05	22	< 0.1
	23	68	03	14	< 0.1
	26	75	- 07	21	< 0.1
November	24	70	06	23	< 0.1

PM2.5	PM10	SO ₂	NO ₂	co
				mg/m
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
				< 0.1
		LIC .		< 0.1
				< 0.1
24	70	06	20	< 0.1
25	72	06	24	< 0.1
18	54	07	16	< 0.1
23	68	04	22	< 0.1
22	66	03	18	< 0.1
24	69	03	14	< 0.1
25	71	07	21	< 0.1
21	61	07	23	< 0.1
24	70	07	21	< 0.1
23	67	06	20	< 0.1
26	73	05	22	< 0.1
22	64	04	24	< 0.1
20	59	03	18	< 0.1
27	77	08	25	< 0.1
25	79	08	27	< 0.1
24	76	07	28	< 0.1
23	66	04	21	< 0.1
30	78	04	23	< 0.1
29	79	03	21	< 0.1
25	73	03	16	< 0.1
23	68	06	21	< 0.1
24				< 0.1
	-			< 0.1
				< 0.1
				< 0.1
				< 0.1
00			La company of the com	< 0.1
				< 0.1
				< 0.1
				< 0.1
26	74	06	21	< 0.1
/n				
	24 26 26 30 27 25 28 24 26 26 30 27 25 28 24 24 24 24 25 18 23 22 24 25 21 24 23 26 22 20 27 25 24 23 30 29 25 24 23 30 29 25 24 25 24 25 24 25 24 25 24 25 24 25 27	µg/m³ µg/m³ 24 71 26 75 26 78 30 86 27 72 25 76 28 79 24 70 26 77 25 72 24 71 24 70 25 72 18 54 23 68 22 66 24 69 25 71 21 61 24 70 23 67 26 73 22 64 20 59 27 77 25 79 24 76 23 66 30 78 29 79 25 79 24 68 25 79 24	µg/m³ µg/m³ µg/m³ 24 71 07 26 75 07 26 75 07 26 75 07 26 78 03 30 86 07 27 72 05 25 76 04 28 79 06 24 70 06 26 77 03 25 72 06 24 71 05 24 71 06 24 71 06 24 70 06 25 72 06 18 54 07 23 68 04 22 66 03 24 69 03 25 71 07 21 61 07 24 70 07 23 67 <td< td=""><td>μg/m³ μg/m³ μg/m³ μg/m³ 24 71 07 23 26 75 07 23 26 78 03 19 30 86 07 25 27 72 05 21 25 76 04 20 28 79 06 26 24 70 06 23 26 77 03 14 25 72 06 19 24 71 05 20 24 71 06 21 24 71 06 21 24 70 06 20 25 72 06 24 18 54 07 16 23 68 04 22 22 66 03 18 24 69 03 14 25 71</td></td<>	μg/m³ μg/m³ μg/m³ μg/m³ 24 71 07 23 26 75 07 23 26 78 03 19 30 86 07 25 27 72 05 21 25 76 04 20 28 79 06 26 24 70 06 23 26 77 03 14 25 72 06 19 24 71 05 20 24 71 06 21 24 71 06 21 24 70 06 20 25 72 06 24 18 54 07 16 23 68 04 22 22 66 03 18 24 69 03 14 25 71

Table No 7:

STACK EMISSION MONITORING RESULTS

Months	Location of sampling	PM mg/Nm ³	SO ₂ mg/Nm ³	NO ₂ mg/Nm ³	Hg mg/Nn
October	Coal Mill – 1 Bag Filter	09	940		
	Cooler ESP – 1	21	: #/)		-
	CVRM – 1 Bag Filter	09	-20	-	-
	CVRM – 2 Bag Filter	06	1967	-	-
	CVRM – 3 Bag Filter	09	150	ı	-
	Coal Mill – 2 Bag Filter	22	20 5	9	-
	Cooler ESP – 2	18	(#X)	*	
	Kiln & VRM ESP – 1	07	15.84	374.8	
	Kiln & VRM – 2 RABH	05	38.45	430.3	-
	Boiler 1 & 2 ESP Stack	27	418.42	252.2	< 0.02
	Clinker Cooler Attached To ESP (DSP Unit)	26		8	
	Coal Mill Attached To Bag Filter (DSP Unit)	05	**	-	4
	Kiln & Raw Mill RABH (DSP Unit)	09	59.03	236.3	-
November	Coal Mill – 1 Bag Filter	18	3 0	•	-
	Cooler ESP – 1	20	-	-	-
	CVRM – 1 Bag Filter	10	175	Ħ	
	CVRM – 2 Bag Filter	07	-		
	CVRM – 3 Bag Filter	08	180	-	1 4:
	Coal Mill – 2 Bag Filter	20	(#A)	ħ.	# :
	Cooler ESP – 2	23	20 0	-	-
	Kiln & VRM ESP – 1	14	37.62	169.57	-
	Kiln & VRM – 2 RABH	07	50.35	220.65	-
	Boiler 1 & 2 ESP Stack	28	442.94	264.81	< 0.02
	Clinker Cooler Attached To ESP (DSP Unit)	20	:#C	-	-
	Coal Mill Attached To Bag Filter (DSP Unit)	06	*	8	-
	Kiln & Raw Mill RABH (DSP Unit)	09	16.20		.41
December	Coal Mill - 1 Bag Filter	14	-		7 (4)
	Cooler ESP – 1	08	-		
	CVRM – 1 Bag Filter	06	-	4	1,22)
	CVRM – 2 Bag Filter	16	:=:	Ħ	191
****	CVRM – 3 Bag Filter	05			E
	Coal Mill - 2 Bag Filter	21			:46
	Cooler ESP – 2	12	4000		1975
	Kiln & VRM ESP – 1	15	12.75	321.14	
	Kiln & VRM – 2 RABH	05	38.56	142.36	(#)
	Boiler 1 & 2 ESP Stack	32	431.34	240.67	< 0.02
	Clinker Cooler Attached To ESP (DSP Unit)	19	¥	-	14
	Coal Mill Attached To Bag Filter (DSP Unit)	- 06	-	+	100
	Kiln & Raw Mill RABH (DSP Unit)	06	31.29	150.23	15
January	Coal Mill – 1 Bag Filter	10	-		141
	Cooler ESP – 1	16	-	-	-
	CVRM – 1 Bag Filter	07			-
78.5	CVRM – 2 Bag Filter	10			
	CVRM – 3 Bag Filter	06	н	-	-
	Coal Mill – 2 Bag Filter	24	-		-
	Cooler ESP – 2	14		y .	2:

Months	Location of sampling	PM mg/Nm ³	SO ₂ mg/Nm ³	NO ₂ mg/Nm ³	Hg mg/Nm ³
	Kiln & VRM ESP – 1	19	17.81	297.88	
	Kiln & VRM – 2 RABH	06	31.09	214	
	Boiler 1 & 2 ESP Stack	32	404.08	221.04	< 0.02
	Clinker Cooler Attached To ESP (DSP Unit)	11		Re: E	198
	Coal Mill Attached To Bag Filter (DSP Unit)	08			- 100
	Kiln & Raw Mill RABH (DSP Unit)	05	11.56	112.84	
February	Coal Mill – 1 Bag Filter	10	e F	743	1981
	Cooler ESP – 1	12	-		12.0
	CVRM – 1 Bag Filter	12	¥		- 3
	CVRM – 2 Bag Filter	20	N	74	118 30
	CVRM – 3 Bag Filter	21			-
	Coal Mill – 2 Bag Filter	18		-	
	Cooler ESP – 2	19	Te -/		(4)
	Kiln & VRM ESP – 1	24	48.34	204.03	
	Kiln & VRM – 2 RABH	09	37.25	298.58	
	Clinker Cooler Attached To ESP (DSP Unit)	24	the state of		100
	Coal Mill Attached To Bag Filter (DSP Unit)	13			
	Kiln & Raw Mill RABH (DSP Unit)	12	22.30	325.38	
March	Coal Mill – 1 Bag Filter	13		(40)	
	Cooler ESP – 1	12	(E)	-	
	CVRM – 1 Bag Filter	09	(4)	3 2 3	-
	CVRM – 2 Bag Filter	10	()	(#/i	ut mbin T
	CVRM – 3 Bag Filter	07			-
	Coal Mill – 2 Bag Filter	24	5#1	₩ 0	-
	Cooler ESP – 2	22		ж.	
	Kiln & VRM ESP – 1	20	19.75	301.26	
	Kiln & VRM – 2 RABH	08	34.67	222.96	-
	Boiler 1 & 2 ESP Stack	36	426.16	230.14	< 0.02
	Clinker Cooler Attached To ESP (DSP Unit)	18			
	Coal Mill Attached To Bag Filter (DSP Unit)	08		Daniel To	0.0
	Kiln & Raw Mill RABH (DSP Unit)	10	14.43	128.27	-

Table No 8:
GROUND WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2024

SI No	Parameter			Results Obta	ined		Unit	Permissible Limit in absence of
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market	Tube Well Village Rani Bandha		Alternate Source as per IS 10500: 2012
1	Turbidity	0.60	1.4	2.9	0.50	0.80	NTU	5.0
2	pH Value	7.25	7.16	6.58	6.75	6.51	743	6.5 - 8.5
3	Total Hardness (as CaCO ₃)	173.38	173.38	379.01	467.71	346.75	mg/l	600
4	Iron (as Fe)	0.06	0.09	0.29	0.22	0.24	mg/l	0.3
5	Chlorides (as CI)	15.65	18.59	45.99	59.68	50.88	mg/l	1000
6	Total Dissolved Solids	269	251	468	532	430	mg/l	2000
7	Electrical Conductivity	420	421	731	869	693	µS/cm	8
8	Calcium (as Ca)	53.33	56.56	119.55	135.75	101.81	mg/l	200
9	Magnesium (as Mg)	9.79	7.84	19.59	31.35	22.53	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	34.11	32.18	76.96	77.49	62.31	mg/l	400

SI	Parameter			Results Obta	ined		Unit	Permissible Limit is always of Alternate Source as per IS 10500; 2012 45 600
10		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market	Tube Well Village Rani Bandha		
13	Total Nitrate (as NO ₃)	4.06	4.46	5.49	10.69	3.67	mg/l	45
14	Total Alkalinity (as CaCO ₃)	144	116	224	192	164	mg/l	600
15	Acidity	04	14	14	20	12	mg/l	:::
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	17.64	19.69	29.72	20.29	20.13	mg/l	
18	Potassium (as K)	2.56	2.24	2.19	1.59	2.94	mg/l	191
19	Fluoride (as F)	0.69	0.74	1.04	0.76	0.84	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND -	ND	ND	mg/l	
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	2	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	*	Agreeable
31	Temperature	27.8	27.8	27.1	27.7	27.1	°C	3-1
32	Residual Free Chlorine	0.12	0.20	0.29	0.24	0.19	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 9: GROUND WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2024

SI	Parameter			Results Obtai	ned		Unit	Permissible Limit in absence of Alternate Source as per IS 10500: 2012
-018		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		
1	Turbidity	1.1	1.0	2.8	0.40	0.60	NTU	5.0
2	pH Value	6.71	6.46	6.72	6.80	6.16		6.5 - 8.5
3	Total Hardness (as CaCO ₃)	548	176	272	384	216	mg/l	600
4	Iron (as Fe)	0.06	0.27	0.09	0.29	0.12	mg/l	0.3
5	Chlorides (as CI)	226.93	13.99	72.98	58.98	42.99	mg/l	1000
6	Total Dissolved Solids	981	249	524	565	278	mg/l	2000
7	Electrical Conductivity	1635	392	907	869	464	µS/cm	
8	Calcium (as Ca)	120.24	56.11	49.69	118.64	46.49	mg/l	200
9	Magnesium (as Mg)	60.26	8.75	35.96	21.38	24.30	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	114.24	20.98	80.69	84.73	22.05	ma/l	400
13	Total Nitrate (as NO ₃)	36.91	3.27	12.99	11.76	19.76	mg/l	45
14	Total Alkalinity (as CaCO ₃)	252	136	236	244	108	mg/l	600
15	Acidity	56	24	42	40	46	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	38.46	7.19	32.54	23.33	10.41	mg/l	-
18	Potassium (as K)	3.11	2.63	1.69	1.27	1.45	mg/l	
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	0.20	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/t	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15

SI	Parameter		7 3	Unit	Permissible Limit in absence of			
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	24.8	25.2	25.0	25.1	25.1	°C	4 1
32	Residual Free Chlorine	0.21	0.16	0.14	0.20	0.10	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 10:
GROUND WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2024

SI	Parameter			Results Obta	ned		Unit	Permissible Limit in absence of
No		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	5.10	18.3	0.53	0.22	< 0.1	NTU	5.0
2	pH Value	6.78	6.67	7.17	6.93	6.48		6.5 - 8.5
3	Total Hardness (as CaCO ₃)	981	164	308	340	280	mg/l	600
4	Iron (as Fe)	0.06	0.10	0.08	0.22	0.22	mg/l	0.3
5	Chlorides (as CI)	14.96	13.99	18.99	58.98	50.98	mg/l	1000
6	Total Dissolved Solids	981	282	510	588	490	mg/l	2000
7	Electrical Conductivity	1636	470	851	980	817	µS/cm	2
8	Calcium (as Ca)	173.15	49.69	60.92	99.39	68.94	mg/l	200
9	Magnesium (as Mg)	38.88	9.72	37.91	22.36	26.24	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	113.53	22.08	16.35	77.84	57.69	mg/l	400
13	Total Nitrate (as NO ₃)	85.7	5.08	6.01	10.96	33.64	mg/l	45
14	Total Alkalinity (as CaCO ₃)	364	144	276	248	156	mg/l	600
15	Acidity	38	16	12	22	26	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	31.71	6.92	10.20	22.29	17.40	mg/l	2
18	Potassium (as K)	1.59	2.86	3.73	1.22	3.18	mg/l	2
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	11-2-1-1	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	23.7	23.7	23.8	23.9	23.9	°C	-
32	Residual Free Chlorine	0.16	0.16	0.11	0.24	0.19	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 11:
GROUND WATER QUALITY RESULT FOR THE MONTH OFJANUARY 2025

SI	Parameter		ASSET LA	Results Obtain	ned		Unit	Permissible Limit in absence of
No		Tube Well Village Liptoi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	6.2	8.1	0.20	0.20	0.10	NTU	5.0
2	pH Value	6.67	6.49	6.52	6.83	5.89	7262	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	746.64	167.28	379.44	379.44	159.12	mg/l	600
4	Iron (as Fe)	0.28	0.19	0.21	0.22	0.26	mg/l	0.3
5	Chlorides (as Cl)	246.92	17.99	79.97	62.98	40.98	mg/l	1000
6	Total Dissolved Solids	972	209	523	524	254	mg/l	2000
7	Electrical Conductivity	1621	342	871	874	416	µS/cm	*
8	Calcium (as Ca)	184.78	50.69	114.46	114,46	47.42	mg/l	200
9	Magnesium (as Mg)	69.40	9.91	22.80	22.80	9.91	ma/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	173.13	17.64	96.36	89.43	23.07	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	11.30	39.14	< 2.20	2.40	mg/l	45
14	Total Alkalinity (as CaCO ₃)	260	88	116	200	80	mg/l	600
15	Acidity	32	20	26	22	38	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	33.98	6.91	29.35	23.21	9.50	mg/l	
18	Potassium (as K)	3.10	2,40	1.53	1.04	1.35	mg/l	
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND -	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	- 110.2011	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	24.1	24.0	23.7	24.1	23.9	°C	-
32	Residual Free Chlorine	0.39	0.20	0.21	0.32	0.16	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 12:

GROUND WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2025

SI No	Parameter			Unit	Permissible Limit in absence of			
110		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	6.9	4.1	5.0	3.7	0.40	NTU	5.0
2	pH Value	6.44	6.42	6.42	6.51	6.22	250	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	493.68	167.28	395.76	391.68	297.84	mg/l	600
4	Iron (as Fe)	0.08	0.26	0.16	0.10	0.10	mg/l	0.3
5	Ohlorides (as Cl)	113.96	14.99	76.98	57.98	48.98	mg/l	1000
6	Total Dissolved Solids	846	260	583	558	411	mg/l	2000
7	Electrical Conductivity	1459	378	897	884	711	µS/cm	
8	Calcium (as Ca)	96.48	55.59	116.10	68.68	86.66	mg/l	200
9	Magnesium (as Mg)	61.47	6.94	25.78	53.54	19.73	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5

SI	Parameter			Results Obtai	ned		Unit	Permissible Limit in absence of
		Tube Well Village Liptoi	Tuise Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10599: 2012
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	118.52	16.70	90.87	96.86	58.85	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	9.28	32.15	< 2.20	3.27	mg/l	45
14	Total Alkalinity (as CaCO ₃)	364	144	208	260	172	mg/l	600
15	Acidity	48	18	30	24	32	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	30.03	6.13	27.88	19.11	17.48	mg/l	
18	Potassium (as K)	1.39	2.52	1.90	1.39	3.10	mg/l	10
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND .	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	52	Agreeable
31	Temperature	26.7	26.7	26.8	26.7	26.7	°C	72
32	Residual Free Chlorine	0.14	0.04	0.11	0.12	0.09	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 13:

GROUND WATER QUALITY RESULT FOR THE MONTH OF MARCH 2025

SI No	Parameter			Results Obtai	ned		Unit	Permissible Limit in absence of
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	5.1	1.0	4.5	0.5	0.9	NTU	5.0
2	pH Value	6.79	6.70	6.74	6.95	6.85	28	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	606.21	192.51	315.39	401.41	159.74	mg/l	600
4	Iron (as Fe)	0.08	0.10	0.12	0.24	0.12	mg/l	0.3
5	Chlorides (as CI)	14.68	18.59	41.09	59.68	39.14	mg/l	1000
6	Total Dissolved Solids	999	228	466	566	226	mg/l	2000
7	Electrical Conductivity	1665	369	719	906	377	µS/cm	
8	Calcium (as Ca)	177.30	52.53	78.80	70.59	47.61	mg/l	200
9	Magnesium (as Mg)	39.81	14.93	28.86	54.74	9.95	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	114.62	12.82	50.48	99.24	22.05	mg/l	400
13	Total Nitrate (as NO ₃)	85.7	3.27	5.26	< 2.20	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	368	116	224	256	80	mg/l	600
15	Acidity	24	12	16	20	10	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	34.79	6.28	26.08	20.25	9.51	mg/l	
18	Potassium (as K)	1.32	2.45	11.42	1.76	1.48	mg/l	
19	Fluoride (as F)	0.26	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0

SI No	Parameter			Unit	Permissible Limit in absence of			
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Dally Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	(2)	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	29.1	28.9	28.2	28.9	28.6	°C	797
32	Residual Free Chlorine	0.16	0.16	0.16	0.10	0.18	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 14: DRINKING WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2024

SI	Parameter			Results	Obtained			Unit	Permissible Limit in absence of Alternate Source as per IS 10500: 2012
No		Near Packing House Drinking Water Point (Line - 1)	Drinking Water Point General Office Ground Floor	Drinking Water Point Near VRM (Line – 2)	Worker Shop Drinking Water Point (Line – 2)	Drinking Water Point Near New Weigh Bridge(DSP Unit)	Drinking Water Near CCR Building 2 rd Floor Pantry Room (DSP Unit)		
1	Turbidity	0.40	0.30	0.40	0.20	0.90	0.30	NTU	5.0
2	pH Value	7.49	7.92	7.54	7.61	7.64	7.67		6.5 - 8.5
3	Total Hardness (as CaCO ₃)	201.6	193.54	189.50	197.68	133.06	137.08	mg/l	600
4	Iron (as Fe)	0.15	0.25	0.19	0.20	0.22	0.28	mg/l	0.3
5	Chlorides (as Cl)	11.74	13.69	10.76	11.74	17.61	16.63	mg/l	1000
6	Total Dissolved Solids	232	234	218	256	208	208	mg/l	2000
7	Electrical Conductivity	362	368	357	402	357	358	µS/cm	ê
8	Calcium (as Ca)	46.86	51.71	50.09	50.09	35.55	46.86	mg/l	200
9	Magnesium (as Mg)	20.57	15.68	15.68	17.64	10.78	4.89	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	25.47	21.81	24.94	56.11	30.50	19.48	mg/l	400
13	Total Nitrate (as NO ₃)	7.65	< 2.20	2.46	< 2.20	2.61	3.19	mg/l	45
14	Total Alkalinity (as CaCO ₃)	124	136	120	120	108	124	mg/l	600
15	Acidity	10	06	02	04	08	08	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	4.92	8,23	3.94	4.58	10.35	7.41	mg/l	-
18	Potassium (as K)	2.09	1.96	1.08	2.14	2.48	1.64	mg/l	
19	Fluoride (as F)	0.26	0.51	0.49	0.51	0.46	0.47	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	¥ 1	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	27,7	27.1	27.7	27.7	27.7	27.7	°C	
32	Residual Free Chlorine	0.16	0.17	0.10	0.09	0.08	0.14	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	Ē coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 15:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2024

SI	Parameter			Results (Obtained			Unit	Permissible
No		Pyro Section Worker's Canteen Drinking Water Point	Drinking Water Near Clinker Silo Area	CPP Workers' CanteenDrinking Water Point (Line - 2)	Near Main Gate Drinking Water Point (Line – 2)	Near Workers Canteen Drinking Water Point (DSP Unit)	Near Coal Mill Drinking Water Point (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.70	0.50	0.20	0.60	0.20	0.40	NTU	5.0
2	pH Value	8.13	7.95	7.98	8.02	8.02	8.02		6.5 - 8.5
3	Total Hardness (as CaCO ₃)	212	208	208	208	216	216	mg/l	600
4	Iron (as Fe)	0.28	0.26	0.28	0.27	0.24	0.27	mg/l	0.3
5	Chlorides (as CI)	28.99	18.99	20.99	19.99	21.99	20.99	mg/l	1000
6	Total Dissolved Solids	301	287	289	285	291	294	mg/l	2000
7	Electrical Conductivity	488	455	460	460	460	463	µS/cm	
8	Calcium (as Ca)	44.89	41.68	48.09	38.48	46.49	48.09	mg/l	200
9	Magnesium (as Mg)	24.3	25.27	21.38	27.22	24.3	22.08	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	20.12	17.89	18.83	19.24	18.31	19.01	mg/l	400
13	Total Nitrate (as NO ₃)	3.71	3.62	< 2.20	4.15	4.33	3.93	mg/l	45
14	Total Alkalinity (as CaCO ₃)	164	164	164	156	160	164	mg/l	600
15	Acidity	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	10.64	10.57	10.54	10.77	11.23	10.89	mg/l	
18	Potassium (as K)	3.65	3.56	3.50	3.59	3.49	3.51	mg/l	-
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	24.9	25.1	24.9	24.9	24.9	24.9	°C	•
32	Residual Free Chlorine	0.10	0.14	0.12	0.11	0.12	0.10	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 16:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2024

SI	Parameter			Results	Obtained			Unit	Permissible Limit
No		Drinking Water Point Near Cooler (Lins – 1)	Difriking Water Near Clinkin Silo(Libe - 1)	Central WorkshopDimbing Water Point (Line 2)	Near CPP Office Building Driving Water PontiCline -7)	Near Cooler Drinking Water Point, (DSP Unit)	Name Gervanie Store Drinking Water Point (DSP Unit)		in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.22	0.25	0.67	< 0.1	0.30	0.05	NTU	5.0
2	pH Value	7.91	7.90	7.95	7.92	7.95	7.92		6.5 - 8.5
3	Total Hardness (as CaCO ₃)	212	212	228	212	232	220	mg/l	600
4	Iron (as Fe)	0.25	0.26	0.24	0.26	0.29	0.28	mg/l	0.3
5	Chlorides (as Ci)	25.99	27.99	34.99	24.99	33.99	24.99	mg/l	1000
6	Total Dissolved Solids	326	345	334	337	356	341	mg/l	2000
7	Electrical Conductivity	563	575	566	562	593	569	µS/cm	-
8	Calcium (as Ca)	36.87	48.09	52.91	44.88	38.48	48.09	mg/l	200
9	Magnesium (as Mg)	29.16	22.36	23.33	24.3	33.05	24.3	mg/l	100

SI	Parameter			Results	Obtained			Unit	Permissible Limit
No		Bricking Water Point Near Goster (Line – I)	Drinking Water Maar Clinker Sho(Line - 1)	Central WorkshopDrinking Water Point (Line 2)	Near CPP Office Building Ortholog Water Point(Uce —2)	Near Cooler Orinsing Water Poort (COP Urin)	Near General Store Drinking Water Point (DSP Limit)		in absence of Alternate Source as per IS 10500: 2012
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	17.24	18.02	18.2	18.04	18.56	18.59	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	4.55	3.80	4.46	5.35	4.33	mg/l	45
14	Total Alkalinity (as CaCO ₃)	180	172	184	184	176	184	mg/l	600
15	Acidity	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l	- 4
16	Sulphide (as H₂S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	11.06	10.87	11.38	10.95	11.54	11.55	mg/l	
18	Potassium (as K)	4.22	4.12	4.19	4.14	4.18	4.17	mg/l	#
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND -	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	5	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	9	Agreeable
31	Temperature	23.9	23.8	23.7	23.7	23.7	23.7	°C	
32	Residual Free Chlorine	0.17	0.16	0.13	0.14	0.20	0.21	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 17:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF JANUARY 2025

SI	Parameter			Results	Obtained			Unit	Permissible
No		Drinking Water Point Near CVRM – 2 (Line – 1)	Drinking Water Point Near General Office Ground Floor	Workshop Drinking Water Point (Line – 2)	Drinking Water Point Near VRM Area (Line – 2)	CCR Building 2nd Floor Pantry Room Drinking Water Point (DSP Unit)	Drinking Water Point Near Weigh Bridge (DSP Unit))		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.10	0.30	0.20	0.30	0.20	0.10	NTU	5.0
2	pH Value	7.83	7.98	7.81	7.79	7.86	7.82	(4)	6.5 - 8.5
3	Total Hardness (as CaCO ₃)	199.92	199.92	204	199.92	199.92	204	mg/l	600
4	Iron (as Fe)	0.21	0.18	0.24	0.26	0.19	0.20	mg/l	0.3
5	Chlorides (as CI)	25.99	25.99	23.99	23.99	24.99	23.99	mg/l	1000
6	Total Dissolved Solids	252	246	260	275	246	290	mg/l	2000
7	Electrical Conductivity	419	411	432	459	410	449	µS/cm	1 (4)
8	Calcium (as Ca)	47.42	47.42	47.42	45.78	47.42	47.42	mg/l	200
9	Magnesium (as Mg)	19.82	19.82	20.82	20.82	19.82	20.82	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	22.67	22.82	21.0	22.12	23.09	22.37	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	< 2.20	< 2.20	< 2.20	17.86	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	120	112	128	140	88	156	mg/l	600
15	Acidity	08	06	06	08	08	06	mg/l	-20
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/i	0.05
17	Sodium (as Na)	10.36	10.98	10.69	12.0	10.32	10.84	mg/l	
18	Potassium (as K)	3.65	3.68	3.77	3.78	3.82	3.95	mg/l	60
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01

SI	Parameter			Results	Obtained			Unit	Permissible
No		Claridag Water Point histor CVHLt – 2 (circ – 1)	Drinking Water Point Near General Office Ground Floor	Warkeron Drinking Water Point (Une - 2)	Drieting Water Point Hear VRM Area (Line – 2)	CCR Building 2 ^{tot} Floor Pantry Room Drinking Water Point (DSP Unit)	Drinking Water Point Near Weigh Bridge (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
31	Temperature	24.3	24.4	24.4	24.3	24.3	24.3	°C	
32	Residual Free Chlorine	0.18	0.36	0.26	0.21	0.20	0.24	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 18:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2025

SI	Parameter		r = 1 - 1	Results	Obtained		11/2	Unit	Permissible
No		Main gate Canteen Drinking Water Point (Line – 1)	CPP Canteen Drinking Water Point (Line – 2)	Drinking Water Point Near AFR Area	Guest House Canteen Drinking Water Point	Near Coal Mill Drinking Water Point (DSP Unit)	Near Coal Mill Drinking Water Point (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.70	1.1	0.70	< 0.1	2.4	1.3	NTU	5.0
2	pH Value	7.51	7.34	7.43	7.43	7.56	7.61	.5	6.5 - 8.5
3	Total Hardness (as CaCO ₃)	204	224.4	212.16	208.08	204	204	mg/l	600
4	Iron (as Fe)	0.16	0.06	0.27	0.08	0.20	0.21	mg/l	0.3
5	Chlorides (as CI)	23.99	20.99	26.99	22.99	25.99	22.99	mg/l	1000
6	Total Dissolved Solids	299	290	286	297	278	311	mg/l	2000
7	Electrical Conductivity	451	440	469	446	469	456	µS/cm	
8	Calcium (as Ca)	45.78	45.78	44.15	52.33	31.07	50.69	mg/l	200
9	Magnesium (as Mg)	21.81	26.76	24.79	18.84	30.73	18.84	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	24.43	24.16	24.74	26.23	24.54	34.46	mg/l	400
13	Total Nitrate (as NO ₃)	3.58	< 2.20	3.98	< 2.20	< 2.20	3.05	mg/l	45
14	Total Alkalinity (as CaCO ₃)	164	156	144	160	152	164	mg/l	600
15	Acidity	06	06	04	04	02	02	mg/l	
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	9.92	9.74	11.34	9.87	10.24	10.07	mg/l	
18	Potassium (as K)	2.96	2.88	2.87	2.92	2.91	2.97	mg/l	72.
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	91 92-14	Agreeable
31	Temperature	26.7	26.7	26.7	26.7	26.7	26.7	۰Ĉ	340
32	Residual Free Chlorine	0.09	0.06	0.08	0.11	0.10	0.11	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 19:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF MARCH 2025

SI	Parameter			Results	Obtained			Unit	Permissible
No		General Office Ground Floor Drinking Water Point	Near Pyro Workers Canteen Drinking Water Point (Line – 1)	Near CPP Office Building Drinking Water Point (Line – 2)	Near VRM Drinking Water Point (Line – 2)	Near Cooler Drinking Water Point (DSP Unit)	General Office Ground Floor Drinking Water Point (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.4	0.6	0.3	0.4	0.3	0.4	NTU	5.0
2	pH Value	7.82	7.59	7.63	7.64	7.63	7.82	562	6.5 - 8.5
3	Total Hardness (as CaCO ₃)	225.28	217.08	221.18	208.89	217.08	225.28	mg/l	600
4	Iron (as Fe)	0.25	0.23	0.24	0.19	0.26	0.25	mg/l	0.3
5	Chlorides (as CI)	25.44	24.46	24.46	25.44	25.44	25.44	mg/l	1000
6	Total Dissolved Solids	296	304	303	299	307	296	mg/l	2000
7	Electrical Conductivity	494	487	506	498	490	494	µS/cm	
8	Calcium (as Ca)	41.04	34.48	45.96	47.61	37.76	41.04	mg/l	200
9	Magnesium (as Mg)	29.86	31.85	25.87	21.89	29.85	29.86	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/i	0.3
12	Sulfate (as SO ₄)	21.81	17.24	20.25	21.08	17.58	21.81	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	< 2.20	3.24	< 2.20	< 2.20	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	124	180	168	120	180	124	mg/l	600
15	Acidity	< 2.0	04	04	02	04	< 2.0	mg/l	150
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	9.23	11,37	10.91	12.48	11.49	9.23	mg/l	250
18	Potassium (as K)	1.96	4.24	3.74	2.09	4.31	1.96	mg/l	(4)
19	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	- ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	29.1	29.0	29.1	28.8	29.1	29.0	°C	12.1
32	Residual Free Chlorine	0.17	0.17	0.14	0.10	0.17	0.17	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 20:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2024

SI	Parameter		Results Obta	ained		Unit	Surface Water Quality	
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Standard as per IS: 2296 (Class C)	
1	pH Value	7.10	7.12	7.55	7.66		6.5 - 8.5	
2	Electrical Conductivity	428	425	371	382	µS/cm	2.85	
3	Total Dissolved Solids	257	255	222	230	mg/l	1500	
4	Total Hardness (as CaCO ₃)	209.66	205.63	169.34	205.63	mg/l		
5	Chlorides (as CI)	16.63	16.63	17.61	13.69	mg/l	600	
6	Sulfate (as SO ₄)	21.53	20.14	23.82	15.59	mg/l	400	
7	Total Nitrate (as NO ₃)	< 2.20	< 2.20	< 2.20	< 2.20	mg/l	50	
8	Fluoride (as F)	0.50	0.56	0.60	0.59	mg/l	1.5	
9	Calcium (as Ca)	54.94	54.94	38.78	53.33	mg/l	(FE	

SI	Parameter	V = T	Results Obt	ained	1	Unit	Surface Water Quality
10	Magnesium (as Mg)	17.63	16.66	17.64	17.63	mg/l	
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.21	0.32	0.29	0.20	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	5
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable		
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	2
24	Dissolved Oxygen (Min-)	6.1	6.1	6.2	6.2	mg/l	4
25	BOD 5 days at 20°C	01	02	01	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	5.28	3.52	5.28	3.52	mg/l	n -
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	100	1000	. 1000	100	Nos/100ml	5000

Table No 21:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2024

SI	Parameter		Results Ob	tained		Unit	Surface Water Quality
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Standard as per 18: 2296 (Class C)
1	pH Value	7.65	7.67	7.44	8.00	126	6.5 – 8.5
2	Electrical Conductivity	564	560	866	484	µS/cm	5
3	Total Dissolved Solids	338	336	520	290	mg/i	1500
4	Total Hardness (as CaCO ₃)	208	216	288	220	mg/l	
5	Chlorides (as CI)	27.99	25.99	60.98	19.99	mg/l	600
6	Sulfate (as SO ₄)	27.22	28.46	57.49	18.91	mg/l	400
7	Total Nitrate (as NO ₃)	< 2.20	< 2.20	< 2.20	3.22	mg/l	50
8	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
9	Calcium (as Ca)	48.09	46.49	57.72	43.28	mg/l	
10	Magnesium (as Mg)	21.38	24.30	34.99	27.22	mg/l	E E
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.21	0.25	0.29	0.26	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	5.
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	= 2 1
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable		3
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	2	
24	Dissolved Oxygen (Min.)	6.2	6.1	6.2	6.2	ma/l	4
25	BOD 5 days at 20°C	01	02	01	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	3.52	5.28	3.52	< 0.10	mg/l	世
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05

SI	Parameter		Results Obt	tained	No.	Unit	Surface Water Quality Standard as per IS: 2296 (Class C)	
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi			
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005	
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0	
32	Total Coliforms	10	100	100	10	Nos/100ml	5000	

Table No 22:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2024

SI	Parameter		Results Ob	tained	1 12	Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
1	pH Value	7.28	7.40	7.30	7.55	25	6.5 - 8.5
2	Electrical Conductivity	810	815	1027	627	μS/cm	
3	Total Dissolved Solids	486	489	616	376	mg/l	1500
4	Total Hardness (as CaCO₃)	244	240	300	220	mg/l	*
5	Chlorides (as CI)	46.98	50.98	64.94	21.99	mg/l	600
6	Sulfate (as SO ₄)	40.08	39.49	69.99	21.16	mg/l	400
7	Total Nitrate (as NO ₃)	2.29	< 2.20	< 2.20	4.46	mg/l	50
8	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
9	Calcium (as Ca)	46.49	46.49	65.73	49.69	mg/l	
10	Magnesium (as Mg)	31.10	30.13	33.05	23.33	mg/l	×
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.26	0.32	0.29	0.25	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	*
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable		*
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	21	
24	Dissolved Oxygen (Min.)	6.2	6.1	6.2	6.2	mg/l	4
25	BOD 5 days at 20°C	01	01	01	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	8.8	8.8	12.32	7.04	mg/l	
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H₅OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	10	100	100	10	Nos/100ml	5000

Table No 23:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF JANUARY 2025

SI	Parameter		Results Obtained					
No		Liploi Nadi Upstream (Shirdi Sal Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)	
1	pH Value	6.98	7.53	7.05	7.40	*	6.5 - 8.5	
2	Electrical Conductivity	837	833	820	440	µS/cm	-	

SI	Parameter		Result	s Obtained		Unit	Surface Water
3	Total Dissolved Solids	503	500	492	264	mg/l	1500
4	Total Hardness (as CaCO ₃)	314.16	314.16	314.16	204	mg/l	
5	Chlorides (as Cl)	85.97	77.97	60.98	19.99	mg/l	600
6	Sulfate (as SO ₄)	58.50	55.78	61.41	19.02	mg/l	400
7_	Total Nitrate (as NO ₃)	16.90	2.36	< 2.20	4.26	mg/l	50
8	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
9	Calcium (as Ca)	65.41	65.41	65.41	47.42	mg/l	-
10	Magnesium (as Mg)	36.68	36.68	36.68	20.82	mg/l	= =
11	Copper (as Cu)	< 0.10	< 0:10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.31	0.34	0.30	0.28	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	(%)	£ (
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	3210	•
24	Dissolved Oxygen (Min.)	6.2	6.0	6.2	6.4	mg/l	4
25	BOD 5 days at 20°C	01	02	02	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	17.6	8.8	17.6	8.8	mg/l	C ₍₋ , 1
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	72
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	100	10	10	Nos/100ml	5000

Table No 24:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2025

SI	Parameter		Results	Obtained		Unit	Surface Water
No		Lipioi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liptoi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
1 =	pH Value	7.07	6.98	6.98	7.09	:#0	6.5 - 8.5
2	Electrical Conductivity	938	869	905	438	µS/cm	
3	Total Dissolved Solids	563	521	552	264	mg/l	1500
4	Total Hardness (as CaCO ₃)	334.56	306	289.68	208.08	mg/l	
5	Chlorides (as CI)	97.96	88.97	72.98	19.99	mg/l	600
6	Sulfate (as SO ₄)	61.7	59.88	58.28	23.74	mg/l	400
7	Total Nitrate (as NO ₃)	10.29	< 2.20	< 2.20	4.11	mg/l	50
8	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
9	Calcium (as Ca)	94.84	60.50	80.13	37.61	mg/l	
10	Magnesium (as Mg)	23.79	37.67	21.81	27.76	mg/l	
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.16	0.27	0.17	0.29	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	6-01 -
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	2 12
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable		*:

SI	Parameter		Results	Unit	Surface Water		
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Lipioi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	140
24	Dissolved Oxygen (Min.)	6.0	6.2	6.1	6.3	mg/l	4
25	BOD 5 days at 20°C	02	01	01	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	10.56	8.8	8.8	5.28	mg/l	12
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	7.63
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	100	10	10	Nos/100ml	5000

Table No 25:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF MARCH 2025

SI No	Parameter		Results	Obtained		Unit	Surface Water
		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
1	pH Value	7.36	7.26	7.16	7.05	7:	6.5 - 8.5
2	Electrical Conductivity	923	921	940	364	µS/cm	- 30
3	Total Dissolved Solids	554	553	564	218	mg/l	1500
4	Total Hardness (as CaCO ₃)	339.96	315.39	344.06	167.94	mg/l	: #F
5	Chlorides (as Cl)	98.96	90.01	73.38	11.74	mg/l	600
6	Sulfate (as SO ₄)	59.45	61.11	58.34	17.26	mg/l	400
7	Total Nitrate (as NO ₃)	4.01	3.96	2.96	< 2.20	mg/l	50
8	Fluoride (as F)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.5
9	Calcium (as Ca)	96.86	62.38	96.86	39.40	mg/l	200
10	Magnesium (as Mg)	24.88	38.82	24.88	16.92	mg/l	1000
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10.	mg/l	1.5
12	Iron (as Fe)	0.24	0.29	0.30	0.19	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	- 4 -
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr+6)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable		THE S
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	- 15	100
24	Dissolved Oxygen (Min.)	6.1	6.0	6.0	6.2	mg/l	4
25	BOD 5 days at 20°C	01	02	02	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	8.8	7.04	10.56	5.28	mg/l	- :: · :: · :: · :: · :: · :: · :: · ::
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	Rec
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	100	100	10	Nos/100ml	5000

Table No 26:

26.1 EFFLUENT WATER QUALITY RESULT OF ETP INLET

SI No	Parameters	Results Obtained							
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH		
1	pH Value	7.36	7.36	7.49	7.65	7.42	7.48	-	
2.	Total Suspended Solids	< 2.5	9.0	< 2.5	11.2	06	6.7	mg/l	
3.	Oil & Grease	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l	
4.	BOD 5days at 20°C	30	40	140	30	35	40	mg/l	
5.	COD	92.46	122.62	420.16	92.462	109.92	122.82	mg/l	

26.2 EFFLUENT WATER QUALITY RESULT OF ETP OUTLET

SI No	Parameters	Results Obtained							Unit
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	Conditions	2004
1	pH Value	7.50	7.44	7.56	7.61	7.39	7.54	5.5 – 9.0	354
2.	Total Suspended Solids	< 2.5	7.0	< 2.5	6.4	< 2.5	< 2.5	100	mg/l
3.	Oil & Grease	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	10	mg/l
4.	BOD 5days at 20°C	10	28	14	14	10	13	2	mg/l
5.	COD	33.612	85.712	43.118	43.461	32.481	40.251	=	mg/l

Table No 27:

27.1 EFFLUENT WATER QUALITY RESULT OF BOILER BLOW DOWN (CPP)

SI No	Parameters	Results Obtained							
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	MARCH			
1	pH Value	8.26	8.88	7.67	8.25	8.96	-		
2.	Total Suspended Solids	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	mg/l		
3.	Oil & Grease	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l		
4.	COD	25.624	27.162	24.621	26.362	25.819	mg/l		
5.	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l		
6.	Iron (as Fe)	0.28	0.24	0.30	0.23	0.22	mg/l		

27.2 EFFLUENT WATER QUALITY RESULT OF COOLING TOWER BLOW DOWN (CPP)

SI No	Parameters	Results Obtained							
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	MARCH			
1	pH Value	8.21	8.61	7.63	8.08	8.63			
2.	Total Suspended Solids	14	63	< 2.5	20.2	14.2	mg/l		
3.	Oil & Grease	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l		
4.	Total Nitrate (as NO ₃)	5.56	5.43	4.96	5.02	5.24	mg/l		
5.	Phosphate (as PO ₄)	2.45	2.02	2.32	2.36	2.26	mg/l		
6.	Total Chromium (as Cr)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l		
7.	Zinc (as Zn)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l		
8.	Residual Chlorine (as Cl ₂)	0.22	0.26	0.18	0.20	0.23	mg/l		

Table No 28 : EFFLUENT WATER QUALITY RESULT OF STP OUTLET (LINE – 2)

SI N	Parameters			Permissible Limit as per CTO Conditions	Unit				
0		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH		
1	pH Value	7.28	7.34	7.46	7.47	7.14	7.24	6.5 – 9.0	
2.	Total Suspended Solids	< 2.5	19	< 2.5	18.4	14.0	5.1	100	mg/l
3.	BOD 5days at 20°C	27	22	27	29	14	10	30	mg/l
4.	COD	78.60	77.46	83.42	88.20	45.612	32.490	B431	mg/l
5.	Fecal coliform	100	100	100	100	100	100	1000	mg/l

Table No 29:

EFFLUENT WATER QUALITY RESULT OF STP OUTLET (DSP UNIT)

SI No	Parameters	Results Obtained	Permissible Limit as per CTO	Unit					
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	Conditions	10.00
1	pH Value	7.49	7.41	7.50	7.51	7.14	7.26	6.5 - 9.0	-
2.	Total Suspended Solids	< 2.5	7-8.0	< 2.5	26.4	14.0	31.8	100	mg/l
3.	BOD 5days at 20°C	23	24	25	28	14	28	30	mg/l
4.	COD	70.462	73.416	76.80	86.60	45.612	85.112	+	mg/l
5.	Fecal Coliform	100	100	100	100	100	1000	1000	mg/l

Table No 30:

SOIL QUALITY RESULT FOR THE MONTH OF OCTOBER 2024

SI. No.	Parameter	Unit	In front of HR office	AFR Area (Line – 2)	STP Area (DSP Unit)
1.	Colour	12	Brownish	Greyish	Brownish
2.	Type of Soil		Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	JE 15	Sandy Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.4	1.6	1.5
5.	pH (1:2 Suspension)		7.85	8.30	8.62
6.	Electrical Conductivity	µS/cm	233	348	386
7.	Iron	mg/kg	3.92	6.28	2.21
8.	Calcium	mg/kg	185	210	182
9.	Available Potassium (as K ₂ O)	Kg/ha	516	639.12	597.48
10.	Organic Carbon	%	0.88	< 0.50	0.90
11.	Available Nitrogen (as N)	Kg/ha	426.49	263.42	263.42
12.	Manganese	mg/kg	7.53	8.46	7.83
13.	Infiltration Rate	cm/hr	7.34	5.26	6.26
14.	Porosity	g/cm ³	0.23	0.19	0.34
15.	Moisture Content	%	20.44	22.84	21.75
16.	Chloride	mg/kg	0.21	0.18	0.31
17.	Sulphate	mg/kg	0.56	0.39	0.48
18.	Available Phosphorous (as P ₂ O ₅)	Kg/ha	< 5.0	< 5.0	< 5.0

Table No 31: SOIL QUALITY RESULT FOR THE MONTH OF NOVEMBER 2024

SI. No.	Parameter	Unit	AFR Area (Line – 1)	Water Harvesting Pond (Line – 2)	Konark Vihar Area (Line – 2)	AFR Area DSP Unit
1.	Colour	亲	Greyish	Greyish	Brownish	Greyish
2.	Type of Soil		Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture		Sandy Clay Loam	Silty Clay Loam	Silty Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.6	1.5	1.4	1.6
5.	pH (1:2 Suspension)		7.70	7.41	7.30	7.58
6.	Electrical Conductivity	µS/cm	402	679	289	453
7.	Iron	mg/kg	3.86	6.34	5.45	4.32
8.	Calcium	mg/kg	190	215	185	194
9.	Available Potassium (as K ₂ O)	Kg/ha	497.28	439.56	339.24	784.8
10.	Organic Carbon	%	2.84	1.024	2.72	3.62
11.	Available Nitrogen (as N)	Kg/ha	137.98	225.79	112.89	250.86
12.	Manganese	mg/kg	4.55	8.22	5.65	6.25
13.	Infiltration Rate	cm/hr	7.28	5.69	6.25	5.60
14.	Porosity	g/cm ³	0.26	0.22	0.24	0.40
15.	Moisture Content	%	20.5	22.5	24.3	25.6
16.	Chloride	mg/kg	0.28	0.22	0.30	0.45
17.	Sulphate	mg/kg	0.62	0.45	0.52	0.68
18.	Available Phosphorous (as P ₂ O ₅)	Kg/ha	10.96	< 5.0	< 5.0	14.96

Table No 32: SOIL QUALITY RESULT FOR THE MONTH OF DECEMBER 2024

SI. No.	Parameter	Unit	Inside Store Yard (Line – 1)	132 KV Station Area (Line – 2)	Near Weigh Bridge DSP Unit
1.	Colour	-	Greyish	Greyish	Brownish
2.	Type of Soil	18 11	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture		Sandy Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.3	1.8	1.42
5.	pH (1:2 Suspension)	-	7.83	8.50	8.75
6.	Electrical Conductivity	µS/cm	1421	467	452
7.	Iron	mg/kg	3.92	6.28	5.08
8.	Calcium	mg/kg	185	210	188
9.	Available Potassium (as K ₂ O)	Kg/ha	643.8	559.68	71.64
10.	Organic Carbon	%	3.03	1.5091	< 0.50
11.	Available Nitrogen (as N)	Kg/ha	87.80	150.528	37.63
12.	Manganese	mg/kg	9.61	7.95	9.02
13.	Infiltration Rate	cm/hr	6.54	4.65	9.64
14.	Porosity	g/cm ³	0.18	0.20	0.85
15.	Moisture Content	%	21.2	16.5	32.0
16.	Chloride	mg/kg	0.11	0.18	0.18
17.	Sulphate	mg/kg	0.60	0.58	0.76
18.	Available Phosphorous (as P ₂ O ₅)	Kg/ha	< 5.0	< 5.0	< 5.0

Table No 33: SOIL QUALITY RESULT FOR THE MONTH OF JANUARY 2025

SI. No.	Parameter	Unit	ETP Area (Line -1)	STP Area (Line – 2)	Liquid AFR AREA (DSP UNIT)
1.	Colour	- a	Greyish	Greyish	Greyish
2.	Type of Soil	- *	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	E E	Sandy Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.4	1.7	1.34
5.	pH (1:2 Suspension)	*	7.62	8.42	8.88
6.	Electrical Conductivity	µS/cm	398	625	320
7.	Iron	mg/kg	4.8	4.88	6.04
8.	Calcium	mg/kg	168	189	197
9.	Available Potassium (as K ₂ O)	Kg/ha	173.16	261.72	279
10.	Organic Carbon	%	0.57	1.20	0.94
11.	Available Nitrogen (as N)	Kg/ha	175.61	137.98	150.52
12.	Manganese	mg/kg	8.62	7.53	9.02
13.	Infiltration Rate	cm/hr	5.54	4.74	9.64
14.	Porosity	g/cm ³	0.18	0.20	0.85
15.	Moisture Content	%	20.2	23.7	25.3
16.	Chloride	mg/kg	0.19	0.15	0.21
17.	Sulphate	mg/kg	0.54	0.69	0.86
18.	Available Phosphorous (as P ₂ O ₅)	Kg/ha	< 5.0	< 5.0	< 5.0

Table No 34: SOIL QUALITY RESULT FOR THE MONTH OF FEBRUARY 2025

SI. No.	Parameter	Unit	In Front Of HR Office (Line -1)	AFR Area (Line – 2)	Konark Vihar Area	STP Area (DSP Unit)
1.	Colour	5.00	Brownish	Greyish	Brownish	Greyish
2.	Type of Soil	948	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	07/	Silty Clay Loam	Clay Loam	Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.4	1.6	1.5	1.8
5.	pH (1:2 Suspension)	- SE	8.22	7.84	8.22	8.07
6.	Electrical Conductivity	μS/cm	342	615	312	605
7,	Iron	mg/kg	7.05	6.13	7.21	7.02
8.	Calcium	mg/kg	163	184	170	157
9.	Available Potassium (as K ₂ O)	Kg/ha	326.40	466.08	257.64	305.76
10.	Organic Carbon	%	0.90	3.15	1.09	1.60
11.	Available Nitrogen (as N)	Kg/ha	188.16	188.16	238.34	225.79
12.	Manganese	mg/kg	9.76	8.63	9.23	5.02
13.	Infiltration Rate	cm/hr	4.77	4.26	4.26	7.39
14.	Porosity	g/cm ³	0.20	0.21	0.19	0.12
15.	Moisture Content	%	22.84	21.2	22.5	20.74
16.	Chloride	mg/kg	0.23	0.19	0.16	0.26
17.	Sulphate	mg/kg	0.8	0.61	0.71	0.67
18.	Available Phosphorous(as P ₂ O ₅)	Kg/ha	< 5.0	< 5.0	< 5.0	< 5.0

Table No 35:

SOIL QUALITY RESULT FOR THE MONTH OF MARCH 2025

SI. No.	Parameter	Unit	Inside Storeyard (Line -1)	Water Harvesting Pond (Line – 2)	AFR Area (DSP UNIT)
1.	Colour	•	Greyish	Brownish	Greyish
2,	Type of Soil		Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Sandy Clay Loam	Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	2.24	2.5	1.2
5.	pH (1:2 Suspension)	ě	8.21	8.05	7.86
6.	Electrical Conductivity	µS/cm	487	948	427
7.	Iron	mg/kg	6.2	6.34	5.08
8.	Calcium	mg/kg	184	221	174
9.	Available Potassium (as K ₂ O)	Kg/ha	179.52	365.64	431.28
10.	Organic Carbon	%	1.10	0.88	0.80
11.	Available Nitrogen (as N)	Kg/ha	125.44	213.25	175.62
12.	Manganese	mg/kg	8.9	8.22	5.64
13.	Infiltration Rate	cm/hr	8.64	9.69	7.62
14.	Porosity	g/cm ³	0.18	0.22	0.12
15.	Moisture Content	%	26.9	28.5	28.7
16.	Chloride	mg/kg	0.19	0.11	0.12
17.	Sulphate	mg/kg	0.63	0.55	0.72
18.	Available Phosphorous (as P ₂ O ₅)	Kg/ha	< 5.0	< 5.0	< 5.0

Table No: 36:

NOISE LEVEL MONITORING DATA

From 01.10.2024 to 31.03.2025

Month	Location	L _{eq} dB(A) Day Time	L _{eq} dB(A) Night Time
October	Main gate Near Canteen (Line – 1)	61.0	59.3
	General Store (Line – 1)	59.8	60.3
	Guest House Area	56.0	50.6
	Konark Vihar	49.9	43.0
	CPP Area (Line – 2)	61.2	59.9
	TT 4 Area (Line – 2)	61.3	62.1
	Project Gate Area (DSP Unit)	48.8	52.2
	General Store Area (DSP Unit)	60.4	59.6
November	Atithi Niwas	59.7	50.1
	General Store (Line – 1)	58.0	56.5
	Guest House Area	54.5	48.0
	Konark Vihar	46.4	40.3
	CCR Building Area (Line – 2)	66.5	65.7
	Refractory Main Gate	66.2	66.2
	STP Area (DSP Unit)	55.8	54.4
	AFR Storage Area (DSP Unit)	50.8	39.8
December	Main gate Near Canteen (Line – 1)	55.4	52.0
	B .G Loco Gate Area (Line – 1)	59.5	58.0
	Guest House Area	53.6	42.8
	Konark Vihar	44.4	42.7
**	CPP Area(Line – 2)	54.6	51.9
	TT – 4 Area (Line – 2)	55.5	48.7
	General Store Area (DSP Unit)	58.5	57.2
	Project Gate Area (DSP Unit)	59.4	63.1
January	Near General Store Area (Line – 1)	61.2	59.0

Month	Location	L _{eq} dB(A) Day Time	L _{eq} dB(A) Night Time
	Refractory Main Gate Area (Line – 1)	65.7	64.9
	Guest House Area	54.9	42.1
	Konark Vihar	41.3	34.4
	Workshop Area(Line – 2)	51.8	52.5
	CCR Building (Line – 2)	62.9	59.0
	AFR Storage Area (DSP Unit)	60.0	59.0
	STP Area (DSP Unit)	65.5	65.4
February	Near General Store Area (Line – 1)	56.1	52.6
	Refractory Main Gate Area (Line – 1)	61.2	59.6
	Guest House Area	55.6	49.3
	Konark Vihar	42.2	38.1
	CPP Area (Line – 2)	49.1	43.1
	Lime Stone Transfer Point Area (Line – 2)	69.0	68.1
	General Store Area (DSP Unit)	58.8	57.1
	Project Gate Area (DSP Unit)	58.6	58.0
March	Near General Store Area (Line – 1)	60.0	58.8
	Refractory Main Gate Area (Line – 1)	65.0	65.3
	Guest House Area	53.9	45.0
	Konark Vihar	48.8	36.3
	Workshop Area(Line – 2)	59.2	57.4
	CCR Building (Line – 2)	70.0	70.2
	General Store Area (DSP Unit)	60.0	60.7
	Project Gate Area (DSP Unit)	68.6	68.6
